
王晨晨,博士,讲师。2025年6月毕业于南开大学计算机学院,获工学博士学位。2019年6月毕业于安徽大学数学科学学院,获理学学士学位。
研究方向:
主要从事机器学习基础理论与方法研究,具体包括:
1)降维:特征选择与特征抽取,探索高维数据的有效表示、信息压缩和可解释性;
2)谱图理论和方法:谱聚类、谱嵌入、谱图神经网络,利用图结构揭示数据的内在关联;
3)表格数据处理:结构化表格数据的表征学习。
联系方式:
E-mail:wangc@mail.nankai.edu.cn
通讯地址:呼和浩特市赛罕区大学西路235号内蒙古大学计算机学院,邮编010021
学术论文:
[1]Chenchen Wang, Jun Wang, Zhichen Gu, Jin-Mao Wei, Jian Liu. Unsupervised feature selection by learning exponential weights[J]. Pattern Recognition, 2024, 148: 110183.(中科院一区)
[2]Chenchen Wang, Zhichen Gu, Jin-Mao Wei. Spectral clustering and embedding with inter-class topology-preserving[J]. Knowledge-Based Systems, 2024, 284: 111278.(中科院一区)
[3] Zhenyu Wang#,Chenchen Wang#, Jin-Mao Wei, and Jian Liu. Multi-class feature selection by exploring reliable class correlation[J]. Knowledge-Based Systems, 2021, 230: 107377. (中科院一区,共同第一作者)
[4]Chenchen Wang, Jun Wang, Yanfei Li, Chengkai Piao, and Jin-Mao Wei. Dual Regularized Feature Selection for Class-Specific and Global Feature Associations [J]. Entropy 2025, 27, 190.(中科院三区)
[5]Chenchen Wang, Jun Wang, Yanfei Li, and Jin-Mao Wei. Discrete Feature Selection via Bi-Level Optimization for Hyperparameter Tuning [C]. International Joint Conference on Neural Networks (IJCNN), 2025.(CCF-C)